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Introduction

Motivations

Non-invasive cardiovascular measurements

Digital twins
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Introduction

Non-invasive cardiovascular measurements

Figure: Placement of PV catheter for generating PV loops [SEA+22]
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Introduction

Non-invasive cardiovascular measurements

Figure: Ultrasound is a non-invasive technique to obtain patient data.
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Introduction

Digital Twins

Definition: Digital Twin
A digital twin is a virtual representation of a system that can be
personalized with data and then modified to observe how the true
system would change in response to interventions or over time.

Concept being increasingly applied and developed for
healthcare.

[BSdSvdH18, BBE+20, FDV+20, OCNY23, WZL+24, HJM+19,
CGMR20, CDLH21, Sub20, VID+21, CAMM+20, EMD20, SHL23]
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Introduction

Digital Twins

A digital twin built from non-invasive medical images can reducing
the cost and health burden of:

1. evaluating patient health status and prognosis

2. providing timely and accurate diagnoses

3. performing in-silico trials for determining correct treatments and
guiding intervention
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Introduction

Physics-Informed Approach

With a lot of data, we can train a model to implicitly learn biophysical
constraints.

In smaller data settings, biophysical models can be used to aide in
model training:

Physics constrained learning requires solutions to satisfy
physical models (hard constraint).
Physics-informed neural networks (PINNs) incorporate physical
models in the loss function (soft constraint).
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Introduction

Physics-Informed Neural Networks

Data driven approach to
1. finding solutions u to differential equations (forward model), and
2. finding parameters θ that discover the differential equations
(inverse model).

du
dt

+ f [θ, u(x, t)] = 0

F :=
du
dt

+ f [θ, u(x, t)] ≈ 0

F Dean · Math of ML Week 3 · March 1, 2024 11 / 38



Introduction

Physics-Informed Neural Networks

Data driven approach to
1. finding solutions u to differential equations (forward model), and
2. finding parameters θ that discover the differential equations
(inverse model).

du
dt

+ f [θ, u(x, t)] = 0

F :=
du
dt

+ f [θ, u(x, t)] ≈ 0

F Dean · Math of ML Week 3 · March 1, 2024 11 / 38



Introduction

Physics-Informed Neural Networks

Figure: Physics-informed neural network [CDCG+22]
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Introduction

Physics-Informed Neural Networks
People usually cite Raissi et 2019 as pioneering the approach
[RPK19].

Figure: PINN literature is prolific [CDCG+22]

There is also critique on PINNs [KGZ+21].
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Introduction

Physics-Informed Approach

We assume that cardiac pressures and volumes are governed by a 5
variable electric circuit model of the heart.

Patient specific parameters for the resulting ODE system give us a
patient specific PV-loop (unique ODE solution).

Parameters→
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Physics Model

Electric Circuit Model of the Heart
Describe pressures as voltages:

RM RA

x2 x1 C(t) x3x4

RC

LS

RS

Let x = [x1, x2, x3, x4, x5] = [PLV (t), PLA(t), PA(t), PAo(t),Q(t)] describe
the voltages x1, x2, x3, x4 and total flow x5.
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Physics Model

Volume-Pressure Relationship in Model

Elastance relates pressure and volume:

E(t) =
PLV (t)

VLV (t)− Vd

Modeled as

E(t) = (EMAX − EMIN) · 1.55 ·

[ ( tn
0.7

)1.9
1+

( tn
0.7

)1.9
]
·

[
1

1+
( tn
1.17

)21.9
]
+ EMIN,

with tn = t/Tmax for Tmax = 0.2+ 0.15Tc, and Tc the duration of a
cardiac cycle.
Visualizations of this relationship with toy volume:
https://www.desmos.com/calculator/dgfbaot4zf

https://www.desmos.com/calculator/4dfyy8ao9o
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Physics Model

ODE System Representing the Model
Let x = [VLV (t)− Vd, x2, x3, x4, x5].

x′ = A1x+ D1p(x) (1)

Where A1 is a 5×5 time-independent matrix, and D1 is a 5× 2
time-independent matrix representing the activity of the diodes:

A1 =


0 0 0 0 0
0 −1

RSCR
1

RSCR
0 0

0 1
RSCS

−1
RSCS

0 1
CS

0 0 0 0 −1
CA

0 0 −1
LS

1
LS

−RC
LS

 ; D1 =


1 −1
−1
CR

0
0 0
0 1

CA
0 0

 (2)

With the vector p(x) given by:

p(x) =

[
max{x2−x1·E(t), 0}

RM
max{x1·E(t)−x4, 0}

RA

]
(3)
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Physics Model

Project Goal

↓
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Physics Model

Two Inverse Problems

1. Obtaining patient specific parameters θ is an inverse problem:

M(θ) = x

for ODE solution x and forward modelM (obtaining the ODE
solution).

This inverse problem is identifiable:
Existence and uniqueness of x are guarenteed by Picard-Lindelöf.
Uniqueness of θ: We can show that in our case, complete
knowledge of the system’s state variables (pressures, volumes,
and blood flow) allows us to identify model parameters uniquely.

It makes sense to talk aboutM−1 andM.
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Physics Model

Two Inverse Problems

2. We have a second inverse problem:

K(x) = y

where unknown forward model K maps the cardiovascular system
state x to the observed echo videos y.

State Variables (Pressure, Volume, Flow)→

This problem is ill-posed. We may have many of the same y
originating from different x’s (not injective).
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Physics Model

Two Inverse Problems
We combine the two inverse problems to

A(θ) = y

for ultrasound images y and ODE parameters θ.

The unknown forward model A is the composition ofM and K.

Model Parameters→ State Variables→

A(θ) = K(M(θ)) = y

If we can train a model to invert this task, we also obtain patient
specific PV loops.
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Computer Learning

Physics-Informed Transfer Architecture for A−1

We have an inverse problem with unknown forward model A and
partially labeled data (yi, x̃i) where x̃i are partial knowledge of xi at
some time points.

We train a 3D-CNN to obtain a generative solution to the inverse
problem A−1.

→ State Variables→ Model Parameters

M−1K−1(y) = θ

A−1(y) = θ
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Computer Learning

Physics-Informed Transfer Architecture for A−1

We have partial information about xi associated to each video yi . This
means we have information about the intermediate step of A:

x = K−1(y) = M(θ).

We use fixed NN interpolator approximation ofM to model the
dynamics of the electric circuit system.

→ Parameters θ → M(θ) = x→ Training Loss
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Computer Learning

Fixed NN interpolator

Our approach for incorporating physics:
Use numerical ODE solvers to generate synthetic data: (θi, x̃i).
Train a NN to learn the mapM : θ → x by minimizing loss
between true and predicted x̃i .
Fix the weights of this model.

PINN approach to inverse problems:
Define the differential equation f as F(t) := x′ − A1x− D1p(x)
for solution x(t).
Train a NN to approximate x and learn parameters θ by
minimizing MSEx +MSEF (data loss + soft physics constraint).
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Computer Learning

Motivation for fixed NN interpolator approach

1. Resembles supervised learning used in input-output (IO) control
theory systems to identify the effects of parameters on system
dynamics.

2. Scales well with increasingly complex physical models (once
interpolator is trained no increase in cost).
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Computer Learning

Details on Architecture and Loss

Step 1: Train a neural network interpolator to automate solving the
5x5 ODE system using synthetic data and output only
VLV (tES), VLV (tED). This is the NN Interpolator.

[Tc, startv , Emax, Emin,RM,RA, Vd] → solution: x(t) → VLV (tES), VLV (tED)

3,840 synthetic data points linearly sampled from realistic
parameter ranges mapping parameters
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Computer Learning

Details on Architecture and Loss
Step 2:

F Dean · Math of ML Week 3 · March 1, 2024 27 / 38



Experiments

Experiments: Data and MAE
Data:

EchoNet: 10,030 apical-4-chamber ultrasound videos from
routine clinical care at Stanford University Hospital [OHG+20]
CAMUS: 500 fully annotated cardiac ultrasound videos in
2-chamber view [Lec19]
each with left-ventricle volume for end systole and diastole

dataset MAE (%) MAE without PINN (%)

CAMUS 7.50 7.16
EchoNet 5.59 5.53

Table: Mean Absolute Error (MAE) Achieved with and without PINN: True vs.
Simulated EF labels
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Experiments

Experiments: Personalized PV loops
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Experiments

Experiments: Parameters predicted (EchoNet)
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Experiments

Experiments: Parameters predicted (CAMUS)
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Experiments

Experiments: Learning pressure differentials
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Experiments

Experiments: Predicting disease labels

F Dean · Math of ML Week 3 · March 1, 2024 33 / 38



Experiments

Experiments: AUC for predicting MS labels

Settings:
Supervised learning task to predict MS labels directly from
videos
Predicting MS labels from learned parameters (trained with EDV
and ESV loss)
Predicting MS labels from learned parameters (trained with EF
loss)

AUC videos to MS parameters to
MS (V loss)

parameters to
MS (EF loss)

EchoNet 0.8 0.59 0.5
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Experiments

Experiments: In-silico trial for left-ventricular
assistance device (LVAD)
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Experiments

Experiments: In-silico trial for left-ventricular
assistance device (LVAD) with different pumping
speeds
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Experiments

Summary of the Novelty of Our Approach

1. We demonstrate the ability to learn patient specific, latent ODE
parameters.

2. We show the utility of a novel PINN-like approach with real
medical image data directly!

3. Our fixed NN interpolator increases speed and convergence over
using ODE solvers directly in model training.
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Experiments
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