
Neural Networks are Universal Approximators

Joshua Benjamin III

February 23, 2024

The Concept

▶ The idea of defining hypothesis classes for function
approximation predates neural networks.

▶ Historical context provided by Weierstrass’s theorem.

▶ How is this carried out in practice when implementing and
training a neural network?

Weierstrass’s Theorem

Theorem (Weierstrass, 1865.) Let g : [0, 1] → R be any
continuous function. Then, g can be ε-approximated in the
sup-norm by some polynomial of sufficiently high degree.

▶ Weierstrass’s approach involved convolving with a Gaussian
and using Taylor series.

▶ Bernstein provided a more direct constructive proof.

▶ The proof is based on constructing a set of interpolating basis
functions.

▶ Bernstein’s polynomials densely span the space of continuous
functions.

Taylor’s Formula and Theorem with Remainder

Taylor’s formula for a function f (x) that is infinitely differentiable
at a point a is given by:

f (x) = f (a)+f ′(a)(x−a)+
f ′′(a)

2!
(x−a)2+. . .+

f (n)(a)

n!
(x−a)n+Rn(x)

where Rn(x) is the remainder (or error) term after n terms, which
can be expressed in the Lagrange form as:

Rn(x) =
f (n+1)(c)

(n + 1)!
(x − a)n+1

for some value c between a and x .
Taylor’s theorem provides a precise bound on how good the
approximation is by giving the remainder term Rn(x).

Universal Approximation

Definition (Universal Approximator)

Let F be a given hypothesis class. Then, F is a universal
approximator over some domain S if for every continuous function
g : S → R and approximation parameter ε > 0, there exists f ∈ F
such that:

sup
x∈S

|f (x)− g(x)| ≤ ε.

The Weierstrass theorem showed that the set of all polynomials is
a universal approximator.

Stone-Weierstrass Theorem

A generalization of this theorem shows that other families of
functions that behave like polynomials are also universal
approximators. This is called the Stone-Weierstrass theorem,
stated as follows.

Theorem (Stone-Weierstrass, 1948)

If the following hold:

1. Every f ∈ F is continuous.

2. For every x , there exists f ∈ F such that f (x) ̸= 0.

3. For every x , x ′, x ̸= x ′, there exists f ∈ F such that
f (x) ̸= f (x ′).

4. F is closed under additions and multiplications.

then F is a universal approximator.

Neural Network Architecture

▶ A neural network consists of layers of neurons connected by
weights.

▶ Neurons within a layer are not connected.

▶ Each neuron in a layer receives input from all neurons in the
previous layer.

Neural Network Formula

Given a layer l , the output a(l) of the neurons in this layer can be
calculated as:

a(l) = σ(W (l)a(l−1) + b(l))

Where:

▶ a(l−1) is the output from the previous layer.

▶ W (l) is the weight matrix for layer l .

▶ b(l) is the bias vector for layer l .

▶ σ is the activation function (e.g., sigmoid, ReLU).

Neural Networks as Universal Approximators

We will use this property to show that in very general situations,
several families of neural networks are universal approximators. To
be precise, let f (x) be a single neuron:

fc,w ,b : x 7→ cσ(⟨w , x⟩+ b)

and define
F = span{fc,w ,b}

as the space of all possible single-hidden-layer networks with
activation σ.

Theorem (Cosine Activation)

If we use the cosine activation σ(·) = cos(·), then F is a universal
approximator.

Cosine case proof

This result is the original ”universal approximation theorem” and
can be attributed to Hornik, Stinchcombe, and White. Other
similar results are due to Cybenko and Funahashi but using
techniques from functional analysis rather than Stone-Weierstrass.
These all were published in 1989.

Completing the Proof

All we need to do is to show that the space of (possibly unbounded
width) single-hidden-layer networks satisfies the four conditions of
Stone-Weierstrass.

▶ Continuity: Composition of continuous function.

▶ Identity: For every x , cos(⟨0, x⟩) = cos(0) = 1 ̸= 0.

▶ Separation: For every x ̸= x ′,

f (z) = cos
(

1
∥x−x ′∥22

⟨z − x ′, z − x⟩
)
separates x , x ′.

▶ Closure: Closure under additions is trivial by adding more
hidden units. Closure under multiplications can be seen from
the trig identity
cos(⟨u, x⟩) cos(⟨v , x⟩) = 1

2(cos(⟨u + v , x⟩) + cos(⟨u − v , x⟩)).
This means that products of two cosine neurons can be
expressed by the sum of two (other) cosine neurons. This
completes the proof.

Sigmoidal Activation Functions

Hornik et al showed a more general result for sigmoidal activations
which just means any function that satisfies σ such that:

lim
z→−∞

σ(z) = 0 and lim
z→∞

σ(z) = 1.

This result covers ”threshold” activations, like tanh, other regular
sigmoids, etc.

Theorem
If we use any sigmoidal activation σ(·) that is continuous, then F
is a universal approximator.

Activation Functions

Figure: Various Activation Functions

Universal Approximation Theorem

Let C (X ,Rm) denote the set of continuous functions from a
subset X of a Euclidean Rn space to a Euclidean space Rm. Let
σ ∈ C (R,R).
Then σ is not polynomial if and only if for every n ∈ N, m ∈ N,
compact K ⊆ Rn, f ∈ C (K ,Rm), ε > 0 there exist k ∈ N,
W ∈ Rk×n, b ∈ Rk , C ∈ Rm×k such that

sup
x∈K

∥f (x)− g(x)∥ < ε

where

g(x) = C · (σ ◦ (W · x + b))

The Multivariable Chain Rule

If a variable z depends on two variables y and x , which in turn
depend on a third variable t, the chain rule can be expressed as
follows:

dz

dt
=

∂z

∂x

dx

dt
+

∂z

∂y

dy

dt

In the case of more variables, for a function u(x1, x2, . . . , xn) where
each xi is a function of t, the chain rule generalizes to:

du

dt
=

n∑
i=1

∂u

∂xi

dxi
dt

Backpropagation

Backpropagation is used to calculate the gradient of the loss
function with respect to the weights and biases of the network. For
a network with a loss function L, the gradient with respect to the
weights in layer l is calculated as:

∂L

∂W (l)
=

∂L

∂a(l)
· ∂a

(l)

∂z(l)
· ∂z(l)

∂W (l)

∂L

∂b(l)
=

∂L

∂a(l)
· ∂a

(l)

∂z(l)

Where:

z(l) = W (l)a(l−1) + b(l)

is the weighted input to layer l ,
∂L
∂a(l)

is the gradient of the loss with respect to the output of layer
l , which is calculated during backpropagation from the final layer
back to the input layer.

Gradient Descent

Gradient Descent updates the weights and biases of the network to
minimize the loss function:

W (l) = W (l) − η
∂L

∂W (l)

b(l) = b(l) − η
∂L

∂b(l)

where η is the learning rate.

Stochastic Gradient Descent (SGD)

SGD updates parameters using a small subset of the training data,
called a mini-batch, which allows for faster convergence:

W (l) = W (l) − η
∂L

∂W (l)
(mini-batch)

b(l) = b(l) − η
∂L

∂b(l)
(mini-batch)

RMSProp Optimizer

RMSProp adjusts the learning rate for each parameter based on
the moving average of squared gradients:

rt = ρrt−1 + (1− ρ)

(
∂L

∂θt

)2

θt+1 = θt −
η√
rt + ϵ

· ∂L

∂θt

Where:

▶ θt represents the parameters (weights and biases) at time t.

▶ ∂L
∂θt

is the gradient of the loss function L with respect to θt .

▶ rt is the moving average of the squared gradients.

▶ ρ is the decay rate.

▶ η is the learning rate.

▶ ϵ is a small constant for numerical stability.

Adam Optimizer
Adam combines the advantages of two SGD extensions, AdaGrad
and RMSProp, and computes individual adaptive learning rates for
different parameters:

mt = β1mt−1 + (1− β1)
∂L

∂θt

vt = β2vt−1 + (1− β2)

(
∂L

∂θt

)2

m̂t =
mt

1− βt
1

v̂t =
vt

1− βt
2

θt+1 = θt − η
m̂t√
v̂t + ϵ

Where:
▶ θt represents parameters (weights and biases) at time t.
▶ mt and vt are estimates of the first and second moments of

the gradients, respectively.
▶ β1, β2, η, and ϵ are hyperparameters.

PyTorch Example

	Neural Network Formula
	Backpropagation
	Gradient Descent
	Stochastic Gradient Descent (SGD)
	RMSProp Optimizer
	Adam Optimizer
	PyTorch Example

