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Set Up

> Let X be a collection of points in R™ and Y be a collection of points in R" i.e.
X ={x1,...,zx} and Y = {y1, ..., yx}.
> ldeally, we want to find some continuous function f € C(R™ R") s.t.
f(x;) = y; for all i.

> By a model space M, we will call a space of continuous functions C(R"!, R"»).

> How can we find such f7?

In other settings, we can have other model spaces. For example, probability distributions.



What'’s a Neural Network?

> For that, consider a new map py : R™ — R™ that consists of a composition of affine

linear transformation W; with a non-linear function o
RS LU RS - R LSS

pg(X) = WhO'Wh,10' v WQUWlx

where W;x = A;x 4+ b; with A; being a linear transformation R — R™+! and b;
being a vector in R™i+1

> We can see that py lives in a space of continuous functions from R™ to R™" i.e.
pg € C(R™ R™).

> pp is a neural network (NN).



NN Architecture

> Now, f and py live in the same Model space C(R™ R"r).

> Let's collect all A; and b; into a set
0 = {(A;,b;) € RN}

where N is a number of parameters in A; and b;.
> The space # = R is called a parameter space P.

> Let n = (ny,na,...,ny). We will call a tuple (n, o) to be an architecture of a NN
Do-

> In the literature, A; are called weights and b; are called biases.



Objects

Training data set: (X,Y)

NN: Po

Affine Linear Transformation: Wix = A;x+ b;
Activation function: o

Weights: 0= (A;,b;)
Model Space: C(R™,R")

Parameter Space RN, N is the number of weights. NN: 5



Weight Map

> Next, let's define a weight map
v:P—-M

Gl—)pg

> If we have a notion of a distance (metric) || - ||, then we can define a loss function

loss(pg, (X,Y)) ZHPG @) = o

> Usually, when we initialize initial random weights 6, the loss is pretty big. The goal is

adjust our weights via gradient descent in M to minimize the loss function



Further Questions and Concepts to Learn

v

Universal Approximation Theorem (why can we even do it?)

\Y%

Over fitting (ability to generalize NN)

v

Getting stuck in local minima (a loss function landscape)
> Best initialization
> Way to optimize (Stochastic Gradient Descent, Adam optimizer)

> Different models M require different NN architectures.



What are Deep Polynomial Neural Networks (DPNNs)?

A PNN is defined as follows:

> It's NN without bias i.e. 6 = (4;,0).
> It’s activation function o := p, is given by a monomial z" i.e. p, is defined by the

entrywise operation

T T

pr(x) = (21,...,2;).
> Thus the DPNN outputs for each coordinate a homogeneous polynomials i.e.

po(x) = (pp(x), ..., Py" (%))

> The model space M is given by a product of symmetric spaces (Sym,»—1(R"))"" i.e.

Sym,»—1(R™) is a space of homogeneous polynomial of degree 7"~! in n; variables.



Polynomial Neural Network — Example

This PNN has architecture d = (3,2,1),r = 2, and is given by the polynomial map
Dy : R? — Rl,x — WapaWix
Here we have:

> po is the activation function that squares each coordinate.

> W3 and Ws are linear transformations.



Parameter Map

We can compute the polynomial py(x):

1
ail ai2 a3
= (WapaWi)x = (b b -
po(x) = (WapeW1)x (1 2)'02 <a21 a92 a23> 2;

= (b by) (a1171 + a1aze + aizzs)?
(ag171 + a2z + agsws)?

where ¢; := a;1x1 + a;0r9 + a;373.

) = b1g; + bag3

T : R® — Sym,(R3) = RS

(aij, bk)i,j,k — po(z) = bi(a1121 + ajoxe + (I13333)2 + bo(ag1x1 + agewe + CL231‘3)2
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Example d = (3,2,1), r =2

For architecture d = (3,2,1), » = 2 and parameters

ail a2 a3
9 = WI = (bl b2) ) W2 = <a21 a2 a23>:| ’

the resulting map W is given by

bia?, + baa3;

blaﬁ + b2a§2

bla% + bza%3
2(byaiiaiz + baasiaze)
2(brai1a13 + baagiags)
2(brai2a13 + baagzoags)

0 —

with the entries that are resulting coefficients of a homogeneous polynomial b1¢7 + bags.
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Neuromanifolds and -varieties

M = Im(V) denotes the neuromanifold. This is a semialgebraic set.
Its Zariski closure V = M is called the neurovariety.

An architecture of NN is filling if V = (Sym,»—1(R™))™_ In this case, we say that M is
thick.

Question: What architectures are filling?
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Single Output Networks

Next, let's consider networks with the architecture d = (n,m, 1) for any r € N.
Then py € Sym,.(R™) as

po(x) = biqi(z)" 4+ baga(z)" + - - - + bygm(x)" with

gi(z) = anxi+ -+ amzn, i=1,2...,m

So, we can see that

My = {po € Sym,(R") | pg = biq] + bagy + - - + bmqy,}
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Single Output Networks: d = (n,m, 1) and r = 2

The neuromanifold M2 C Sym,(R™) is given by biq} + bags + - - - + bmg?,.

Question: When is Mg = Sym,(R")?
> Take some @ € Sym,(R"™).
> To each @ there's a corresponding symmetric matrix A of size n x n.

> Then we can see that Q = b1¢3 + bags + - - - + byg?, if and only if
A= blvlTvl + bgUQTvg 4+ -+ bmv,r‘flvm
for some row vectors v;, i1 =1,...,m.

So, M2 is described by symmetric matrices of rank at most m.
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Single Output Networks: d = (n,m, 1) and r = 2

> Mga = Symy(R™) for m > n as we need exactly n linear terms to hit the full rank of
any symmetric matrix.

> Mgo = Vg2 C Symy(R™) for m < n. The image is given by symmetric matrices of
rank < m. In other words, the image is cut out by (m + 1) x (m + 1) minors.

Example: Recall d = (3,2,1), r = 2.
Then pp € My if and only if det(A) = 0 where A = bjvT vy + bovd vy =

bia3y + baa3, 2(brariai2 + baagiaze) 2(biariaiz + baasiass)
= | 2(b1a11a12 + baaziazn) bia3y + boad, 2(biai2a13 + baagass)
2(brar1a13 + baagiazs) 2(biaizaiz + baazaass) bra3s + boa3,

15



Single Output Networks: d = (m,n,1) and r > 2

The neuromanifold Mg, C Sym,.(R") is given by big] + bag + - - + bng),.

> Instead of a symmetric matrix A, we have a symmetric tensor 7.

> Instead of A = blvrfvl -+ bngTvg + -+ bpvl vy, we have
T = blvi@r + bgvg§7~ e b2

> Unfortunately, the set of tensors with rank < r is not closed.

> So, understanding M, is equivalent to understanding the set of real symmetric

tensors 1" of “some” symmetric rank m
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Example: d = (3,m, 1) and r =3

Take a homogeneous polynomial f of degree 3 in 3 variables x,y, and z.
According to [?], we can find a change of basis with real coefficients s.t.

fl@,y,2) = g(x,y,2) = 2® + y° + 2° + Awyz with A € R.
We know the following about the symmetric tensor T},

> if X # —3, then rankg(7},) = 4.
> if A= —3, then rankg(7},) = 5.

This gives us that

> d= (3745 ]-)7T — 3v Md,3 -,C«- Vd,3 = Sym3(R3)

> d =(3,5,1),r =3, Mg 3= Symg(R3).
Question: For a 2-layer network architecture (d,r) such that Vg, C (Sym,(R"))"", are
there any other examples (other than d = (n,m, 1), r = 2) where My, =V;,?
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Example: d = (2,2,2,1) and r = 2

For the architecture d = (2,2,2,1) and r = 2, we have the following polynomial map

biigi + b12q§> _

pe(X) = (W3P2W2P2W1)X = W3P2(W2P2W1X) = W3P2 (bmqf + b22qg

_ (b11¢? + b12¢3)?
= o) <(bz1tﬁ + ba2g3)?

So, the image of py is given by a homogeneous polynomial of degree 4 in two variables that can be

) = c1(b11q} + b1243)* + c2(b2147 + b22g3)*.

decomposed as
a1gi + a2q7qs + asg

for some a; depending on a;j, byy, and cy.

Question: What can we say about decomposing real symmetric tensors T € Sym,(R?) as
T = 0192 + avP20%? + apv$*?
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Thank you! Questions? Comments?
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