Geometry of Deep Polynomial Neural Network

Maksym Zubkov

Math and ML Reading Group
February 16, 2024

Set Up

\triangleright Let X be a collection of points in $\mathbb{R}^{n_{1}}$ and Y be a collection of points in $\mathbb{R}^{n_{h}}$ i.e.

$$
X=\left\{x_{1}, \ldots, x_{k}\right\} \text { and } Y=\left\{y_{1}, \ldots, y_{k}\right\}
$$

\triangleright Ideally, we want to find some continuous function $f \in C\left(\mathbb{R}^{n_{1}}, \mathbb{R}^{n_{h}}\right)$ s.t.

$$
f\left(x_{i}\right)=y_{i} \text { for all } i
$$

\triangleright By a model space \mathcal{M}, we will call a space of continuous functions $C\left(\mathbb{R}^{n_{1}}, \mathbb{R}^{n_{h}}\right)$.
\triangleright How can we find such f ?
In other settings, we can have other model spaces. For example, probability distributions.

What's a Neural Network?

\triangleright For that, consider a new map $p_{\theta}: \mathbb{R}^{n_{1}} \rightarrow \mathbb{R}^{n_{h}}$ that consists of a composition of affine linear transformation W_{i} with a non-linear function σ

$$
\begin{gathered}
p_{\theta}: \mathbb{R}^{n_{1}} \xrightarrow{W_{1}} \mathbb{R}^{n_{2}} \xrightarrow{W_{2}} \mathbb{R}^{n_{3}} \rightarrow \cdots \rightarrow \mathbb{R}^{n_{k-1}} \xrightarrow{W_{h}} \mathbb{R}^{n_{h}} \\
p_{\theta}(\mathbf{x})=W_{h} \sigma W_{h-1} \sigma \ldots W_{2} \sigma W_{1} \mathbf{x}
\end{gathered}
$$

where $W_{i} \mathbf{x}=A_{i} \mathbf{x}+b_{i}$ with A_{i} being a linear transformation $\mathbb{R}^{n_{i}} \rightarrow \mathbb{R}^{n_{i+1}}$ and b_{i} being a vector in $\mathbb{R}^{n_{i+1}}$
\triangleright We can see that p_{θ} lives in a space of continuous functions from $\mathbb{R}^{n_{1}}$ to $\mathbb{R}^{n_{h}}$ i.e. $p_{\theta} \in C\left(\mathbb{R}^{n_{1}}, \mathbb{R}^{n_{h}}\right)$.
$\triangleright p_{\theta}$ is a neural network (NN).

NN Architecture

\triangleright Now, f and p_{θ} live in the same Model space $C\left(\mathbb{R}^{n_{1}}, \mathbb{R}^{n_{h}}\right)$.
\triangleright Let's collect all A_{i} and b_{i} into a set

$$
\theta=\left\{\left(A_{i}, b_{i}\right) \in \mathbb{R}^{N}\right\}
$$

where N is a number of parameters in A_{i} and b_{i}.
\triangleright The space $\theta=\mathbb{R}^{N}$ is called a parameter space \mathcal{P}.
\triangleright Let $\mathbf{n}=\left(n_{1}, n_{2}, \ldots, n_{h}\right)$. We will call a tuple (\mathbf{n}, σ) to be an architecture of a NN p_{θ}.
$\triangleright \operatorname{In}$ the literature, A_{i} are called weights and b_{i} are called biases.

Objects

Training data set:

 (X, Y)
NN:

p_{θ}

Affine Linear Transformation:

$$
W_{i} \mathbf{x}=A_{i} \mathbf{x}+b_{i}
$$

Activation function:

Weights:

Model Space:

$C\left(\mathbb{R}^{n_{1}}, \mathbb{R}^{n_{h}}\right)$
Parameter Space
\mathbb{R}^{N}, N is the number of weights. NN :

Weight Map

\triangleright Next, let's define a weight map

$$
\begin{gathered}
\Psi: \mathcal{P} \rightarrow \mathcal{M} \\
\theta \mapsto p_{\theta}
\end{gathered}
$$

\triangleright If we have a notion of a distance (metric) $\|\cdot\|$, then we can define a loss function

$$
\operatorname{loss}\left(p_{\theta},(X, Y)\right)=\sum_{i=1}^{k}\left\|p_{\theta}\left(x_{i}\right)-y_{i}\right\|
$$

\triangleright Usually, when we initialize initial random weights θ, the loss is pretty big. The goal is adjust our weights via gradient descent in \mathcal{M} to minimize the loss function

Further Questions and Concepts to Learn

\triangleright Universal Approximation Theorem (why can we even do it?)
\triangleright Over fitting (ability to generalize NN)
\triangleright Getting stuck in local minima (a loss function landscape)
\triangleright Best initialization
\triangleright Way to optimize (Stochastic Gradient Descent, Adam optimizer)
\triangleright Different models \mathcal{M} require different NN architectures.

What are Deep Polynomial Neural Networks (DPNNs)?

A PNN is defined as follows:
\triangleright It's NN without bias i.e. $\theta=\left(A_{i}, 0\right)$.
\triangleright It's activation function $\sigma:=\rho_{r}$ is given by a monomial x^{r} i.e. ρ_{r} is defined by the entrywise operation

$$
\rho_{r}(\mathbf{x})=\left(x_{1}^{r}, \ldots, x_{n}^{r}\right) .
$$

\triangleright Thus the DPNN outputs for each coordinate a homogeneous polynomials i.e.

$$
p_{\theta}(\mathbf{x})=\left(p_{\theta}^{1}(\mathbf{x}), \ldots, p_{\theta}^{n_{h}}(\mathbf{x})\right)
$$

\triangleright The model space \mathcal{M} is given by a product of symmetric spaces $\left(\operatorname{Sym}_{r^{h-1}}\left(\mathbb{R}^{n_{1}}\right)\right)^{n_{h}}$ i.e. $\operatorname{Sym}_{r^{h-1}}\left(\mathbb{R}^{n_{1}}\right)$ is a space of homogeneous polynomial of degree r^{h-1} in n_{1} variables.

Polynomial Neural Network - Example

This PNN has architecture $d=(3,2,1), r=2$, and is given by the polynomial map

$$
p_{\theta}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{1}, \mathbf{x} \mapsto W_{2} \rho_{2} W_{1} \mathbf{x}
$$

Here we have:
$\triangleright \rho_{2}$ is the activation function that squares each coordinate.
$\triangleright W_{1}$ and W_{2} are linear transformations.

Parameter Map

We can compute the polynomial $p_{\theta}(\mathbf{x})$:

$$
\begin{gathered}
p_{\theta}(\mathbf{x})=\left(W_{2} \rho_{2} W_{1}\right) \mathbf{x}=\left(\begin{array}{ll}
b_{1} & b_{2}
\end{array}\right) \rho_{2}\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)= \\
=\left(\begin{array}{ll}
b_{1} & b_{2}
\end{array}\right)\binom{\left(a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}\right)^{2}}{\left(a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}\right)^{2}}=b_{1} q_{1}^{2}+b_{2} q_{2}^{2}
\end{gathered}
$$

where $q_{i}:=a_{i 1} x_{1}+a_{i 2} x_{2}+a_{i 3} x_{3}$.

$$
\Psi: \mathbb{R}^{8} \rightarrow \operatorname{Sym}_{2}\left(\mathbb{R}^{3}\right) \cong \mathbb{R}^{6}
$$

$$
\left(a_{i j}, b_{k}\right)_{i, j, k} \mapsto p_{\theta}(x)=b_{1}\left(a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}\right)^{2}+b_{2}\left(a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}\right)^{2}
$$

Example $d=(3,2,1), r=2$

For architecture $d=(3,2,1), r=2$ and parameters

$$
\theta=\left[W_{1}=\left(\begin{array}{ll}
b_{1} & b_{2}
\end{array}\right), W_{2}=\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right)\right]
$$

the resulting map Ψ is given by

$$
\theta \mapsto\left(\begin{array}{c}
b_{1} a_{11}^{2}+b_{2} a_{21}^{2} \\
b_{1} a_{12}^{2}+b_{2} a_{22}^{2} \\
b_{1} a_{13}^{2}+b_{2} a_{23}^{2} \\
2\left(b_{1} a_{11} a_{12}+b_{2} a_{21} a_{22}\right) \\
2\left(b_{1} a_{11} a_{13}+b_{2} a_{21} a_{23}\right) \\
2\left(b_{1} a_{12} a_{13}+b_{2} a_{22} a_{23}\right)
\end{array}\right)
$$

with the entries that are resulting coefficients of a homogeneous polynomial $b_{1} q_{1}^{2}+b_{2} q_{2}^{2}$.

Neuromanifolds and -varieties

$\mathcal{M}:=\operatorname{Im}(\Psi)$ denotes the neuromanifold. This is a semialgebraic set.
Its Zariski closure $\mathcal{V}=\overline{\mathcal{M}}$ is called the neurovariety.
An architecture of NN is filling if $\mathcal{V}=\left(\operatorname{Sym}_{r^{h-1}}\left(\mathbb{R}^{n_{1}}\right)\right)^{n_{h}}$. In this case, we say that \mathcal{M} is thick.

Question: What architectures are filling?

Single Output Networks

Next, let's consider networks with the architecture $d=(n, m, 1)$ for any $r \in \mathbb{N}$.
Then $p_{\theta} \in \operatorname{Sym}_{r}\left(\mathbb{R}^{n}\right)$ as

$$
\begin{gathered}
p_{\theta}(x)=b_{1} q_{1}(x)^{r}+b_{2} q_{2}(x)^{r}+\cdots+b_{m} q_{m}(x)^{r} \text { with } \\
q_{i}(x)=a_{i 1} x_{1}+\cdots+a_{i n} x_{n}, \quad i=1,2 \ldots, m
\end{gathered}
$$

So, we can see that

$$
\mathcal{M}_{d, r}=\left\{p_{\theta} \in \operatorname{Sym}_{r}\left(\mathbb{R}^{n}\right) \mid p_{\theta}=b_{1} q_{1}^{r}+b_{2} q_{2}^{r}+\cdots+b_{m} q_{m}^{r}\right\}
$$

Single Output Networks: $d=(n, m, 1)$ and $r=2$

The neuromanifold $\mathcal{M}_{d, 2} \subseteq \operatorname{Sym}_{2}\left(\mathbb{R}^{n}\right)$ is given by $b_{1} q_{1}^{2}+b_{2} q_{2}^{2}+\cdots+b_{m} q_{m}^{2}$.
Question: When is $\mathcal{M}_{d, 2}=\operatorname{Sym}_{2}\left(\mathbb{R}^{n}\right)$?
\triangleright Take some $Q \in \operatorname{Sym}_{2}\left(\mathbb{R}^{n}\right)$.
\triangleright To each Q there's a corresponding symmetric matrix A of size $n \times n$.
\triangleright Then we can see that $Q=b_{1} q_{1}^{2}+b_{2} q_{2}^{2}+\cdots+b_{m} q_{m}^{2}$ if and only if

$$
A=b_{1} v_{1}^{T} v_{1}+b_{2} v_{2}^{T} v_{2}+\cdots+b_{m} v_{m}^{T} v_{m}
$$

for some row vectors $v_{i}, i=1, \ldots, m$.
So, $\mathcal{M}_{d, 2}$ is described by symmetric matrices of rank at most m.

Single Output Networks: $d=(n, m, 1)$ and $r=2$

$\triangleright \mathcal{M}_{d, 2}=\operatorname{Sym}_{2}\left(\mathbb{R}^{n}\right)$ for $m \geq n$ as we need exactly n linear terms to hit the full rank of any symmetric matrix.
$\triangleright \mathcal{M}_{d, 2}=\mathcal{V}_{d, 2} \subsetneq \operatorname{Sym}_{2}\left(\mathbb{R}^{n}\right)$ for $m<n$. The image is given by symmetric matrices of rank $\leq m$. In other words, the image is cut out by $(m+1) \times(m+1)$ minors.

Example: Recall $d=(3,2,1), r=2$.
Then $p_{\theta} \in \mathcal{M}_{d, 2}$ if and only if $\operatorname{det}(A)=0$ where $A=b_{1} v_{1}^{T} v_{1}+b_{2} v_{2}^{T} v_{2}=$

$$
=\left(\begin{array}{ccc}
b_{1} a_{11}^{2}+b_{2} a_{21}^{2} & 2\left(b_{1} a_{11} a_{12}+b_{2} a_{21} a_{22}\right) & 2\left(b_{1} a_{11} a_{13}+b_{2} a_{21} a_{23}\right) \\
2\left(b_{1} a_{11} a_{12}+b_{2} a_{21} a_{22}\right) & b_{1} a_{12}^{2}+b_{2} a_{22}^{2} & 2\left(b_{1} a_{12} a_{13}+b_{2} a_{22} a_{23}\right) \\
2\left(b_{1} a_{11} a_{13}+b_{2} a_{21} a_{23}\right) & 2\left(b_{1} a_{12} a_{13}+b_{2} a_{22} a_{23}\right) & b_{1} a_{13}^{2}+b_{2} a_{23}^{2}
\end{array}\right) .
$$

Single Output Networks: $d=(m, n, 1)$ and $r>2$

The neuromanifold $\mathcal{M}_{d, r} \subset \operatorname{Sym}_{r}\left(\mathbb{R}^{n}\right)$ is given by $b_{1} q_{1}^{r}+b_{2} q_{2}^{r}+\cdots+b_{m} q_{m}^{r}$.
\triangleright Instead of a symmetric matrix A, we have a symmetric tensor T.
\triangleright Instead of $A=b_{1} v_{1}^{T} v_{1}+b_{2} v_{2}^{T} v_{2}+\cdots+b_{m} v_{m}^{T} v_{m}$, we have

$$
T=b_{1} v_{1}^{\otimes r}+b_{2} v_{2}^{\otimes r}+\cdots+b_{m} v_{m}^{\otimes r}
$$

\triangleright Unfortunately, the set of tensors with rank $\leq r$ is not closed.
\triangleright So, understanding $\mathcal{M}_{d, r}$ is equivalent to understanding the set of real symmetric tensors T of "some" symmetric rank m

Example: $d=(3, m, 1)$ and $r=3$

Take a homogeneous polynomial f of degree 3 in 3 variables x, y, and z. According to [?], we can find a change of basis with real coefficients s.t.

$$
f(x, y, z) \mapsto g(x, y, z)=x^{3}+y^{3}+z^{3}+\lambda x y z \text { with } \lambda \in \mathbb{R} .
$$

We know the following about the symmetric tensor T_{g}
\triangleright if $\lambda \neq-3$, then $\operatorname{rank}_{S}\left(T_{g}\right)=4$.
\triangleright if $\lambda=-3$, then $\operatorname{rank}_{S}\left(T_{g}\right)=5$.
This gives us that

$$
\begin{aligned}
& \triangleright d=(3,4,1), r=3, \mathcal{M}_{d, 3} \subsetneq \mathcal{V}_{d, 3}=\operatorname{Sym}_{3}\left(\mathbb{R}^{3}\right) . \\
& \triangleright d^{\prime}=(3,5,1), r=3, \mathcal{M}_{d^{\prime}, 3}=\operatorname{Sym}_{3}\left(\mathbb{R}^{3}\right) .
\end{aligned}
$$

Question: For a 2-layer network architecture (d, r) such that $\mathcal{V}_{d, r} \subsetneq\left(\operatorname{Sym}_{r}\left(\mathbb{R}^{n_{1}}\right)\right)^{n_{h}}$, are there any other examples (other than $d=(n, m, 1), r=2)$ where $\mathcal{M}_{d, r}=\mathcal{V}_{d, r}$?

Example: $d=(2,2,2,1)$ and $r=2$

For the architecture $d=(2,2,2,1)$ and $r=2$, we have the following polynomial map

$$
\begin{aligned}
& p_{\theta}(\mathbf{x})=\left(W_{3} \rho_{2} W_{2} \rho_{2} W_{1}\right) \mathbf{x}=W_{3} \rho_{2}\left(W_{2} \rho_{2} W_{1} \mathbf{x}\right)=W_{3} \rho_{2}\binom{b_{11} q_{1}^{2}+b_{12} q_{2}^{2}}{b_{21} q_{1}^{2}+b_{22} q_{2}^{2}}= \\
& =\left(\begin{array}{ll}
c_{1} & c_{2}
\end{array}\right)\binom{\left(b_{11} q_{1}^{2}+b_{12} q_{2}^{2}\right)^{2}}{\left(b_{21} q_{1}^{2}+b_{22} q_{2}^{2}\right)^{2}}=c_{1}\left(b_{11} q_{1}^{2}+b_{12} q_{2}^{2}\right)^{2}+c_{2}\left(b_{21} q_{1}^{2}+b_{22} q_{2}^{2}\right)^{2}
\end{aligned}
$$

So, the image of p_{θ} is given by a homogeneous polynomial of degree 4 in two variables that can be decomposed as

$$
\alpha_{1} q_{1}^{4}+\alpha_{2} q_{1}^{2} q_{2}^{2}+\alpha_{3} q_{2}^{4}
$$

for some α_{i} depending on $a_{i j}, b_{p q}$, and c_{k}.
Question: What can we say about decomposing real symmetric tensors $T \in \operatorname{Sym}_{4}\left(\mathbb{R}^{2}\right)$ as $T=\alpha_{1} v_{1}^{\otimes 4}+\alpha_{2} v_{1}^{\otimes 2} v_{2}^{\otimes 2}+\alpha_{2} v_{2}^{\otimes 4}$?

Thank you! Questions? Comments?

