Geometry of Deep Polynomial Neural Network

Maksym Zubkov

Math and ML Reading Group February 16, 2024 \triangleright Let X be a collection of points in \mathbb{R}^{n_1} and Y be a collection of points in \mathbb{R}^{n_h} i.e.

$$X = \{x_1, \dots, x_k\}$$
 and $Y = \{y_1, \dots, y_k\}.$

 \triangleright Ideally, we want to find some continuous function $f \in C(\mathbb{R}^{n_1}, \mathbb{R}^{n_h})$ s.t.

$$f(x_i) = y_i$$
 for all i .

▷ By a model space \mathcal{M} , we will call a space of continuous functions $C(\mathbb{R}^{n_1}, \mathbb{R}^{n_h})$. ▷ How can we find such f?

In other settings, we can have other model spaces. For example, probability distributions.

What's a Neural Network?

 \triangleright For that, consider a new map $p_{\theta} : \mathbb{R}^{n_1} \to \mathbb{R}^{n_h}$ that consists of a composition of affine linear transformation W_i with a non-linear function σ

$$p_{\theta}: \mathbb{R}^{n_1} \xrightarrow{W_1} \mathbb{R}^{n_2} \xrightarrow{W_2} \mathbb{R}^{n_3} \to \dots \to \mathbb{R}^{n_{k-1}} \xrightarrow{W_h} \mathbb{R}^{n_h}$$

$$p_{\theta}(\mathbf{x}) = W_h \sigma W_{h-1} \sigma \dots W_2 \sigma W_1 \mathbf{x}$$

where $W_i \mathbf{x} = A_i \mathbf{x} + b_i$ with A_i being a linear transformation $\mathbb{R}^{n_i} \to \mathbb{R}^{n_{i+1}}$ and b_i being a vector in $\mathbb{R}^{n_{i+1}}$

- \triangleright We can see that p_{θ} lives in a space of continuous functions from \mathbb{R}^{n_1} to \mathbb{R}^{n_h} i.e. $p_{\theta} \in C(\mathbb{R}^{n_1}, \mathbb{R}^{n_h}).$
- \triangleright p_{θ} is a neural network (NN).

 \triangleright Now, f and p_{θ} live in the same *Model space* $C(\mathbb{R}^{n_1}, \mathbb{R}^{n_h})$.

 \triangleright Let's collect all A_i and b_i into a set

$$\theta = \{ (A_i, b_i) \in \mathbb{R}^N \}$$

where N is a number of parameters in A_i and b_i .

- \triangleright The space $\theta = \mathbb{R}^N$ is called a parameter space \mathcal{P} .
- ▷ Let $\mathbf{n} = (n_1, n_2, ..., n_h)$. We will call a tuple (\mathbf{n}, σ) to be an architecture of a NN p_{θ} .
- \triangleright In the literature, A_i are called **weights** and b_i are called **biases**.

Objects

Training data set:	(X,Y)
NN:	$p_{ heta}$
Affine Linear Transformation:	$W_i \mathbf{x} = A_i \mathbf{x} + b_i$
Activation function:	σ
Weights:	$\theta = (A_i, b_i)$
Model Space:	$C(\mathbb{R}^{n_1},\mathbb{R}^{n_h})$

Parameter Space

 b_i)

 \mathbb{R}^N , N is the number of weights. **NN**:

Weight Map

▷ Next, let's define a weight map

$$\Psi: \mathcal{P} \to \mathcal{M}$$
$$\theta \mapsto p_{\theta}$$

 \triangleright If we have a notion of a distance (metric) $\|\cdot\|$, then we can define a loss function

$$loss(p_{\theta}, (X, Y)) = \sum_{i=1}^{k} \|p_{\theta}(x_i) - y_i\|$$

 \triangleright Usually, when we initialize initial random weights θ , the *loss* is pretty big. The goal is

adjust our weights via gradient descent in $\ensuremath{\mathcal{M}}$ to minimize the loss function

- ▷ Universal Approximation Theorem (why can we even do it?)
- ▷ Over fitting (ability to generalize NN)
- ▷ Getting stuck in local minima (a loss function landscape)
- Best initialization
- ▷ Way to optimize (Stochastic Gradient Descent, Adam optimizer)
- \triangleright Different models $\mathcal M$ require different NN architectures.

What are Deep Polynomial Neural Networks (DPNNs)?

A PNN is defined as follows:

- ▷ It's NN without bias i.e. $\theta = (A_i, 0)$.
- \triangleright It's activation function $\sigma:=\rho_r$ is given by a monomial x^r i.e. ρ_r is defined by the entrywise operation

$$\rho_r(\mathbf{x}) = (x_1^r, \dots, x_n^r).$$

▷ Thus the DPNN outputs for each coordinate a homogeneous polynomials i.e.

$$p_{\theta}(\mathbf{x}) = (p_{\theta}^{1}(\mathbf{x}), \dots, p_{\theta}^{n_{h}}(\mathbf{x}))$$

▷ The model space \mathcal{M} is given by a product of symmetric spaces $(\text{Sym}_{r^{h-1}}(\mathbb{R}^{n_1}))^{n_h}$ i.e. $\text{Sym}_{r^{h-1}}(\mathbb{R}^{n_1})$ is a space of homogeneous polynomial of degree r^{h-1} in n_1 variables. This PNN has architecture d = (3, 2, 1), r = 2, and is given by the polynomial map

$$p_{\theta} : \mathbb{R}^3 \to \mathbb{R}^1, \mathbf{x} \mapsto W_2 \rho_2 W_1 \mathbf{x}$$

Here we have:

- $\triangleright~\rho_2$ is the activation function that squares each coordinate.
- \triangleright W_1 and W_2 are linear transformations.

Parameter Map

We can compute the polynomial $p_{\theta}(\mathbf{x})$:

$$p_{\theta}(\mathbf{x}) = (W_2 \rho_2 W_1) \mathbf{x} = \begin{pmatrix} b_1 & b_2 \end{pmatrix} \rho_2 \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} =$$

$$= \begin{pmatrix} b_1 & b_2 \end{pmatrix} \begin{pmatrix} (a_{11}x_1 + a_{12}x_2 + a_{13}x_3)^2 \\ (a_{21}x_1 + a_{22}x_2 + a_{23}x_3)^2 \end{pmatrix} = b_1 q_1^2 + b_2 q_2^2$$

where $q_i := a_{i1}x_1 + a_{i2}x_2 + a_{i3}x_3$.

$$\Psi : \mathbb{R}^8 \to \operatorname{Sym}_2(\mathbb{R}^3) \cong \mathbb{R}^6$$
$$(a_{ij}, b_k)_{i,j,k} \mapsto p_\theta(x) = b_1(a_{11}x_1 + a_{12}x_2 + a_{13}x_3)^2 + b_2(a_{21}x_1 + a_{22}x_2 + a_{23}x_3)^2$$

For architecture d = (3, 2, 1), r = 2 and parameters

$$\theta = \begin{bmatrix} W_1 = \begin{pmatrix} b_1 & b_2 \end{pmatrix}, \ W_2 = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix} \end{bmatrix},$$

the resulting map Ψ is given by

$$\theta \mapsto \begin{pmatrix} b_1 a_{11}^2 + b_2 a_{21}^2 \\ b_1 a_{12}^2 + b_2 a_{22}^2 \\ b_1 a_{13}^2 + b_2 a_{23}^2 \\ 2(b_1 a_{11} a_{12} + b_2 a_{21} a_{22}) \\ 2(b_1 a_{11} a_{13} + b_2 a_{21} a_{23}) \\ 2(b_1 a_{12} a_{13} + b_2 a_{22} a_{23}) \end{pmatrix}$$

with the entries that are resulting coefficients of a homogeneous polynomial $b_1q_1^2 + b_2q_2^2$.

 $\mathcal{M}\coloneqq\mathrm{Im}(\Psi)$ denotes the *neuromanifold*. This is a semialgebraic set.

Its Zariski closure $\mathcal{V} = \overline{\mathcal{M}}$ is called the *neurovariety*.

An architecture of NN is filling if $\mathcal{V} = (\text{Sym}_{r^{h-1}}(\mathbb{R}^{n_1}))^{n_h}$. In this case, we say that \mathcal{M} is thick.

Question: What architectures are filling?

Next, let's consider networks with the architecture d = (n, m, 1) for any $r \in \mathbb{N}$. Then $p_{\theta} \in \text{Sym}_{r}(\mathbb{R}^{n})$ as

$$p_{ heta}(x) = b_1 q_1(x)^r + b_2 q_2(x)^r + \dots + b_m q_m(x)^r$$
 with

$$q_i(x) = a_{i1}x_1 + \dots + a_{in}x_n, \ i = 1, 2.\dots, m$$

So, we can see that

$$\mathcal{M}_{d,r} = \{ p_{\theta} \in \operatorname{Sym}_{r}(\mathbb{R}^{n}) \mid p_{\theta} = b_{1}q_{1}^{r} + b_{2}q_{2}^{r} + \dots + b_{m}q_{m}^{r} \}$$

The neuromanifold $\mathcal{M}_{d,2} \subseteq \operatorname{Sym}_2(\mathbb{R}^n)$ is given by $b_1q_1^2 + b_2q_2^2 + \cdots + b_mq_m^2$.

Question: When is $\mathcal{M}_{d,2} = \operatorname{Sym}_2(\mathbb{R}^n)$?

- \triangleright Take some $Q \in \operatorname{Sym}_2(\mathbb{R}^n)$.
- $\triangleright~$ To each Q there's a corresponding symmetric matrix A of size $n\times n.$
- $\triangleright\,$ Then we can see that $Q=b_1q_1^2+b_2q_2^2+\dots+b_mq_m^2$ if and only if

$$A = b_1 v_1^T v_1 + b_2 v_2^T v_2 + \dots + b_m v_m^T v_m$$

for some row vectors v_i , $i = 1, \ldots, m$.

So, $\mathcal{M}_{d,2}$ is described by symmetric matrices of rank at most m.

Single Output Networks: d = (n, m, 1) and r = 2

- $\triangleright \mathcal{M}_{d,2} = \operatorname{Sym}_2(\mathbb{R}^n)$ for $m \ge n$ as we need exactly n linear terms to hit the full rank of any symmetric matrix.
- $\triangleright \mathcal{M}_{d,2} = \mathcal{V}_{d,2} \subsetneq \operatorname{Sym}_2(\mathbb{R}^n)$ for m < n. The image is given by symmetric matrices of rank $\leq m$. In other words, the image is cut out by $(m+1) \times (m+1)$ minors.

Example: Recall d = (3, 2, 1), r = 2. Then $p_{\theta} \in \mathcal{M}_{d,2}$ if and only if $\det(A) = 0$ where $A = b_1 v_1^T v_1 + b_2 v_2^T v_2 =$

$$= \begin{pmatrix} b_1a_{11}^2 + b_2a_{21}^2 & 2(b_1a_{11}a_{12} + b_2a_{21}a_{22}) & 2(b_1a_{11}a_{13} + b_2a_{21}a_{23}) \\ 2(b_1a_{11}a_{12} + b_2a_{21}a_{22}) & b_1a_{12}^2 + b_2a_{22}^2 & 2(b_1a_{12}a_{13} + b_2a_{22}a_{23}) \\ 2(b_1a_{11}a_{13} + b_2a_{21}a_{23}) & 2(b_1a_{12}a_{13} + b_2a_{22}a_{23}) & b_1a_{13}^2 + b_2a_{23}^2 \end{pmatrix}$$

The neuromanifold $\mathcal{M}_{d,r} \subset \operatorname{Sym}_r(\mathbb{R}^n)$ is given by $b_1q_1^r + b_2q_2^r + \cdots + b_mq_m^r$.

- \triangleright Instead of a symmetric matrix A, we have a symmetric tensor T.
- \triangleright Instead of $A = b_1 v_1^T v_1 + b_2 v_2^T v_2 + \dots + b_m v_m^T v_m$, we have

$$T = b_1 v_1^{\otimes r} + b_2 v_2^{\otimes r} + \dots + b_m v_m^{\otimes r}$$

- \triangleright Unfortunately, the set of tensors with rank $\leq r$ is not closed.
- \triangleright So, understanding $\mathcal{M}_{d,r}$ is equivalent to understanding the set of real symmetric tensors T of "some" symmetric rank m

Take a homogeneous polynomial f of degree 3 in 3 variables x, y, and z. According to [?], we can find a change of basis with real coefficients s.t.

$$f(x,y,z)\mapsto g(x,y,z)=x^3+y^3+z^3+\lambda xyz$$
 with $\lambda\in\mathbb{R}$.

We know the following about the symmetric tensor T_g

▷ if
$$\lambda \neq -3$$
, then rank_S(T_g) = 4.
▷ if $\lambda = -3$, then rank_S(T_g) = 5.

This gives us that

▷
$$d = (3, 4, 1), r = 3, \mathcal{M}_{d,3} \subsetneq \mathcal{V}_{d,3} = \operatorname{Sym}_3(\mathbb{R}^3).$$

▷ $d' = (3, 5, 1), r = 3, \mathcal{M}_{d',3} = \operatorname{Sym}_3(\mathbb{R}^3).$

Question: For a 2-layer network architecture (d, r) such that $\mathcal{V}_{d,r} \subsetneq (\operatorname{Sym}_r(\mathbb{R}^{n_1}))^{n_h}$, are there any other examples (other than d = (n, m, 1), r = 2) where $\mathcal{M}_{d,r} = \mathcal{V}_{d,r}$?

Example: d = (2, 2, 2, 1) and r = 2

For the architecture d = (2, 2, 2, 1) and r = 2, we have the following polynomial map

$$p_{\theta}(\mathbf{x}) = (W_3 \rho_2 W_2 \rho_2 W_1) \mathbf{x} = W_3 \rho_2 (W_2 \rho_2 W_1 \mathbf{x}) = W_3 \rho_2 \begin{pmatrix} b_{11} q_1^2 + b_{12} q_2^2 \\ b_{21} q_1^2 + b_{22} q_2^2 \end{pmatrix} =$$

$$= (c_1 \quad c_2) \begin{pmatrix} (b_{11}q_1^2 + b_{12}q_2^2)^2 \\ (b_{21}q_1^2 + b_{22}q_2^2)^2 \end{pmatrix} = c_1(b_{11}q_1^2 + b_{12}q_2^2)^2 + c_2(b_{21}q_1^2 + b_{22}q_2^2)^2$$

So, the image of p_{θ} is given by a homogeneous polynomial of degree 4 in two variables that can be decomposed as

$$\alpha_1 q_1^4 + \alpha_2 q_1^2 q_2^2 + \alpha_3 q_2^4$$

for some α_i depending on a_{ij} , b_{pq} , and c_k .

Question: What can we say about decomposing real symmetric tensors $T \in \text{Sym}_4(\mathbb{R}^2)$ as $T = \alpha_1 v_1^{\otimes 4} + \alpha_2 v_1^{\otimes 2} v_2^{\otimes 2} + \alpha_2 v_2^{\otimes 4}$?

Thank you! Questions? Comments?