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Set Up

▷ Let X be a collection of points in Rn1 and Y be a collection of points in Rnh i.e.

X = {x1, . . . , xk} and Y = {y1, . . . , yk}.

▷ Ideally, we want to find some continuous function f ∈ C(Rn1 ,Rnh) s.t.

f(xi) = yi for all i.

▷ By a model space M, we will call a space of continuous functions C(Rn1 ,Rnh).

▷ How can we find such f?

In other settings, we can have other model spaces. For example, probability distributions.
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What’s a Neural Network?

▷ For that, consider a new map pθ : Rn1 → Rnh that consists of a composition of affine

linear transformation Wi with a non-linear function σ

pθ : Rn1 W1−→ Rn2 W2−→ Rn3 → · · · → Rnk−1
Wh−→ Rnh

pθ(x) = WhσWh−1σ . . .W2σW1x

where Wix = Aix+ bi with Ai being a linear transformation Rni → Rni+1 and bi

being a vector in Rni+1

▷ We can see that pθ lives in a space of continuous functions from Rn1 to Rnh i.e.

pθ ∈ C(Rn1 ,Rnh).

▷ pθ is a neural network (NN).

3



NN Architecture

▷ Now, f and pθ live in the same Model space C(Rn1 ,Rnh).

▷ Let’s collect all Ai and bi into a set

θ = {(Ai, bi) ∈ RN}

where N is a number of parameters in Ai and bi.

▷ The space θ = RN is called a parameter space P.

▷ Let n = (n1, n2, . . . , nh). We will call a tuple (n, σ) to be an architecture of a NN

pθ.

▷ In the literature, Ai are called weights and bi are called biases.
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Objects

Training data set: (X,Y )

NN: pθ

Affine Linear Transformation: Wix = Aix+ bi

Activation function: σ

Weights: θ = (Ai, bi)

Model Space: C(Rn1 ,Rnh)

Parameter Space RN , N is the number of weights. NN:

θ = (Ai, bi)
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Weight Map

▷ Next, let’s define a weight map

Ψ : P → M

θ 7→ pθ

▷ If we have a notion of a distance (metric) ∥ · ∥, then we can define a loss function

loss(pθ, (X,Y )) =

k∑
i=1

∥pθ(xi)− yi∥

▷ Usually, when we initialize initial random weights θ, the loss is pretty big. The goal is

adjust our weights via gradient descent in M to minimize the loss function
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Further Questions and Concepts to Learn

▷ Universal Approximation Theorem (why can we even do it?)

▷ Over fitting (ability to generalize NN)

▷ Getting stuck in local minima (a loss function landscape)

▷ Best initialization

▷ Way to optimize (Stochastic Gradient Descent, Adam optimizer)

▷ Different models M require different NN architectures.
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What are Deep Polynomial Neural Networks (DPNNs)?

A PNN is defined as follows:

▷ It’s NN without bias i.e. θ = (Ai, 0).

▷ It’s activation function σ := ρr is given by a monomial xr i.e. ρr is defined by the

entrywise operation

ρr(x) = (xr1, . . . , x
r
n).

▷ Thus the DPNN outputs for each coordinate a homogeneous polynomials i.e.

pθ(x) = (p1θ(x), . . . , p
nh
θ (x))

▷ The model space M is given by a product of symmetric spaces (Symrh−1(Rn1))nh i.e.

Symrh−1(Rn1) is a space of homogeneous polynomial of degree rh−1 in n1 variables.
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Polynomial Neural Network — Example

This PNN has architecture d = (3, 2, 1), r = 2, and is given by the polynomial map

pθ : R3 → R1,x 7→ W2ρ2W1x

Here we have:

▷ ρ2 is the activation function that squares each coordinate.

▷ W1 and W2 are linear transformations.
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Parameter Map

We can compute the polynomial pθ(x):

pθ(x) = (W2ρ2W1)x =
(
b1 b2

)
ρ2

(
a11 a12 a13
a21 a22 a23

)x1
x2
x3

 =

=
(
b1 b2

)((a11x1 + a12x2 + a13x3)
2

(a21x1 + a22x2 + a23x3)
2

)
= b1q

2
1 + b2q

2
2

where qi := ai1x1 + ai2x2 + ai3x3.

Ψ : R8 → Sym2(R3) ∼= R6

(aij , bk)i,j,k 7→ pθ(x) = b1(a11x1 + a12x2 + a13x3)
2 + b2(a21x1 + a22x2 + a23x3)

2
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Example d = (3, 2, 1), r = 2

For architecture d = (3, 2, 1), r = 2 and parameters

θ =

[
W1 =

(
b1 b2

)
, W2 =

(
a11 a12 a13
a21 a22 a23

)]
,

the resulting map Ψ is given by

θ 7→


b1a

2
11 + b2a

2
21

b1a
2
12 + b2a

2
22

b1a
2
13 + b2a

2
23

2(b1a11a12 + b2a21a22)
2(b1a11a13 + b2a21a23)
2(b1a12a13 + b2a22a23)


with the entries that are resulting coefficients of a homogeneous polynomial b1q

2
1 + b2q

2
2.
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Neuromanifolds and -varieties

M := Im(Ψ) denotes the neuromanifold. This is a semialgebraic set.

Its Zariski closure V = M is called the neurovariety.

An architecture of NN is filling if V = (Symrh−1(Rn1))nh . In this case, we say that M is

thick.

Question: What architectures are filling?
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Single Output Networks

Next, let’s consider networks with the architecture d = (n,m, 1) for any r ∈ N.
Then pθ ∈ Symr(Rn) as

pθ(x) = b1q1(x)
r + b2q2(x)

r + · · ·+ bmqm(x)r with

qi(x) = ai1x1 + · · ·+ ainxn, i = 1, 2 . . . ,m

So, we can see that

Md,r = {pθ ∈ Symr(Rn) | pθ = b1q
r
1 + b2q

r
2 + · · ·+ bmqrm}
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Single Output Networks: d = (n,m, 1) and r = 2

The neuromanifold Md,2 ⊆ Sym2(Rn) is given by b1q
2
1 + b2q

2
2 + · · ·+ bmq2m.

Question: When is Md,2 = Sym2(Rn)?

▷ Take some Q ∈ Sym2(Rn).

▷ To each Q there’s a corresponding symmetric matrix A of size n× n.

▷ Then we can see that Q = b1q
2
1 + b2q

2
2 + · · ·+ bmq2m if and only if

A = b1v
T
1 v1 + b2v

T
2 v2 + · · ·+ bmvTmvm

for some row vectors vi, i = 1, . . . ,m.

So, Md,2 is described by symmetric matrices of rank at most m.
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Single Output Networks: d = (n,m, 1) and r = 2

▷ Md,2 = Sym2(Rn) for m ≥ n as we need exactly n linear terms to hit the full rank of

any symmetric matrix.

▷ Md,2 = Vd,2 ⊊ Sym2(Rn) for m < n. The image is given by symmetric matrices of

rank ≤ m. In other words, the image is cut out by (m+ 1)× (m+ 1) minors.

Example: Recall d = (3, 2, 1), r = 2.

Then pθ ∈ Md,2 if and only if det(A) = 0 where A = b1v
T
1 v1 + b2v

T
2 v2 =

=

 b1a
2
11 + b2a

2
21 2(b1a11a12 + b2a21a22) 2(b1a11a13 + b2a21a23)

2(b1a11a12 + b2a21a22) b1a
2
12 + b2a

2
22 2(b1a12a13 + b2a22a23)

2(b1a11a13 + b2a21a23) 2(b1a12a13 + b2a22a23) b1a
2
13 + b2a

2
23

 .
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Single Output Networks: d = (m,n, 1) and r > 2

The neuromanifold Md,r ⊂ Symr(Rn) is given by b1q
r
1 + b2q

r
2 + · · ·+ bmqrm.

▷ Instead of a symmetric matrix A, we have a symmetric tensor T .

▷ Instead of A = b1v
T
1 v1 + b2v

T
2 v2 + · · ·+ bmvTmvm, we have

T = b1v
⊗r
1 + b2v

⊗r
2 + · · ·+ bmv⊗r

m

▷ Unfortunately, the set of tensors with rank ≤ r is not closed.

▷ So, understanding Md,r is equivalent to understanding the set of real symmetric

tensors T of “some” symmetric rank m
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Example: d = (3,m, 1) and r = 3

Take a homogeneous polynomial f of degree 3 in 3 variables x, y, and z.

According to [?], we can find a change of basis with real coefficients s.t.

f(x, y, z) 7→ g(x, y, z) = x3 + y3 + z3 + λxyz with λ ∈ R.

We know the following about the symmetric tensor Tg

▷ if λ ̸= −3, then rankS(Tg) = 4.

▷ if λ = −3, then rankS(Tg) = 5.

This gives us that

▷ d = (3, 4, 1), r = 3, Md,3 ⊊ Vd,3 = Sym3(R3).

▷ d′ = (3, 5, 1), r = 3, Md′,3 = Sym3(R3).

Question: For a 2-layer network architecture (d, r) such that Vd,r ⊊ (Symr(Rn1))nh , are

there any other examples (other than d = (n,m, 1), r = 2) where Md,r = Vd,r?
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Example: d = (2, 2, 2, 1) and r = 2

For the architecture d = (2, 2, 2, 1) and r = 2, we have the following polynomial map

pθ(x) = (W3ρ2W2ρ2W1)x = W3ρ2(W2ρ2W1x) = W3ρ2

(
b11q

2
1 + b12q

2
2

b21q
2
1 + b22q

2
2

)
=

= (c1 c2)

(
(b11q

2
1 + b12q

2
2)

2

(b21q
2
1 + b22q

2
2)

2

)
= c1(b11q

2
1 + b12q

2
2)

2 + c2(b21q
2
1 + b22q

2
2)

2.

So, the image of pθ is given by a homogeneous polynomial of degree 4 in two variables that can be

decomposed as

α1q
4
1 + α2q

2
1q

2
2 + α3q

4
2

for some αi depending on aij , bpq, and ck.

Question: What can we say about decomposing real symmetric tensors T ∈ Sym4(R2) as

T = α1v
⊗4
1 + α2v

⊗2
1 v⊗2

2 + α2v
⊗4
2 ?
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Thank you! Questions? Comments?

19


