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About Me

● Favorite undergraduate math class:
○ Set theory

● Studied DNA topology using stochastic 
methods and GPUs

● Worked in industry as a data engineer, 
AI/ML engineer, and AI evangelist.

● Currently Head of AI Engineering for 
Advocate

● Came back to school because I missed 
Evans Hall



“We are all going to be in jeopardy of being replaced by machines” — Fran Drescher, president of SAG-AFTRA



Transformers: More than Meets AI

1. A Brief History of Sequence Modeling

2. Attention Is All You Need

3. Research on LLMs

4. Build Your Own GPT!



A Brief History of Sequence 
Modeling



Examples of Sequence
Modeling

● Time series prediction

● Classify the sentiment of a sentence

● Translate a passage

● Write a five-paragraph essay



RNNs



RNN Code



Sequences in, Sequences out



Problems with RNNs

● Vanishing and exploding gradients*

● Handling long-term dependencies*

● Sequential computation during 

training*

* from the Transformers marketing team



Attention Is All You Need



Attention is All You Need 

● Attention is All Your Need (Vaswani et al. 

2017)

● The image on the right is an “encoder-decoder 

architecture”

● BERT is just the encoder

● ChatGPT is just the decoder



Attention is a weighted average
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Auto-regressive pre-training objective predicts next word
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Masked attention hides the next word when we try to predict it
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General attention
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Linear projections WQ, WK, and WV  first applied
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Linear projections WQ, WK, and WV  first applied
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Scaled Dot-Product Attention

“In practice, we compute the attention function on a set of queries simultaneously, 
packed together into a matrix Q. The keys and values are also packed together into 
matrices K and V . We compute the matrix of outputs as:”



Scaled Dot-Product Attention

QW
Q

KW
K

VW
V

Q

K

V

Matrix Mul.

Scale and 
Opt. 

Mask
Softmax



For Self-Attention Q=K=V
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Self-Attention

Q

● Input and Output can be 
thought of as sequences of 
embeddings (matrices), like Q, 
K, and V themselves

● Self-attention uses the same 
input for Q, K, and V

● NOTE: Q, K, and V sometimes 
refers to the inputs to the 
attention function the “Input”
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Attention

Input

Output Fully 
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Layer 
(learned 
matrix mul)



Multi-Head Attention





Check out “The Annotated Transformer”



Research on LLMs



Model Understanding: Induction Heads

https://transformer-circuits.pub/202
2/in-context-learning-and-induction-
heads/index.html

https://transformer-circuits.pub/2022/in-context-learning-and-induction-heads/index.html
https://transformer-circuits.pub/2022/in-context-learning-and-induction-heads/index.html
https://transformer-circuits.pub/2022/in-context-learning-and-induction-heads/index.html


Permuting the Layer Structure of RoBERTa (RTE Accuracy)

Left: Directed graph of the transitions for models with accuracy ≥ 70%
Right: Transitions Heatmap



Geometric Deep Learning
● E.g., extends CNNs to curved 

manifolds
● Theory to unify different neural 

networks architecture families 
based on message passing 
(generalization of convolution 
kernels)

https://arxiv.org/pdf/2104.13478.pdf


Mamba: Linear-Time Sequence Modeling with Selective State Spaces 
(Gu & Dao 2023)

https://arxiv.org/pdf/2312.00752.pdf


What is Responsible AI?

● A Human Rights-Based Approach to 

Responsible AI (Prabhakaran et al 2022)

● Universal Declaration of Human Rights

https://arxiv.org/abs/2210.02667
https://arxiv.org/abs/2210.02667
https://www.un.org/sites/un2.un.org/files/2021/03/udhr.pdf


Train Your Own Transformer!



Thanks!


