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About Me

e Favoriteundergraduate math class:
o Set theory

e Studied DNA topology using stochastic
methods and GPUs

e Worked inindustry as a data engineer,
Al/ML engineer, and Al evangelist.

e Currently Head of Al Engineering for
Advocate

e Came back to school because | missed
Evans Hall




“We are all going to be in jeopardy of being replaced by machines” — Fran Drescher, president of SAG-AFTRA



Transformers: More than Meets Al

1. ABrief History of Sequence Modeling
2. Attention Is All You Need

3. Researchon LLMs

4. Build Your Own GPT!



A Brief History of Sequence
Modeling



Examples of Sequence
Modeling

Time series prediction

Classify the sentiment of a sentence
Translate a passage

Write a five-paragraph essay
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import torch.nn as nn

F— class RNN(nn.Module):
def __init__(self, input_size, hidden_size, output_size):

RNN COde super(RNN, self).__init__()

self.hidden_size = hidden_size

self.i2h = nn.Linear(input_size + hidden_size, hidden_size)
self.h20 = nn.Linear(hidden_size, output_size)
self.softmax = nn.LogSoftmax(dim=1)

def forward(self, input, hidden):
combined = torch.cat((input, hidden), 1)

hidden = self.i2h(combined)
output = self.h2o(hidden)
output = self.softmax(output)

return output, hidden

def initHidden(self):
return torch.zeros(l, self.hidden_size)

n_hidden = 128
rnn = RNN(n_letters, n_hidden, n_categories)



Sequences in, Sequences out
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Problems with RNNs

e Vanishing and exploding gradients™

e Handling long-term dependencies®

e Sequential computation during
training*

*from the Transformers marketing team




Attention Is All You Need



Attention is All You Need

Attention is All Your Need (Vaswani et al.
2017)

The image on theright is an “encoder-decoder
architecture”

BERT is just the encoder

ChatGPT is just the decoder
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Attention is a weighted average
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Auto-regressive pre-training objective predicts next word
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Masked attention hides the next word when we try to predict it

keys Pattn values
the — a1 . the
query o % cow result
‘ i I . - weighted
jumped jumped a, jumped average
over — 3 . over Does this
4 predict

“over"?



General attention
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Linear projections W, W, and W,, first applied
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Linear projections W, W, and W,, first applied
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Scaled Dot-Product Attention

“In practice, we compute the attention function on a set of queries simultaneously,
packed together into a matrix Q. The keys and values are also packed together into
matrices K and V. We compute the matrix of outputs as:”

Attention(Q, K, V') = softma (QKT)V
ntion(Q, K, V) = softmax(———
Vdj,



Scaled Dot-Product Attention
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For Self-Attention Q=K=V
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Self-Attention
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e |nput and Output can be

thought of as sequences of
embeddings (matrices), like Q,
K, and V themselves

e Self-attention uses the same

input for Q, K, and V

e NOTE: Q, K, andV sometimes

refers to the inputs to the
attention function the “Input”
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def forward(self, x):
# batch size, sequence length (in tokens), embedding dimensionality
B, T, C = x.size()
hs = C // self.n_head # head size

k = self.key(x).view(B, T, self.n_head, hs).transpose(1l, 2)

q = self.query(x).view(B, T, self.n_head, hs).transpose(1l, 2)
v = self.value(x).view(B, T, self.n_head, hs).transpose(1, 2)
k_t = k.transpose(-2, -1)

d_k = k.size(-1)

att = F.softmax(q @ k_t / math.sqrt(d_k), dim=-1)

y =att@v

# re—assemble all head outputs side by side
y = y.transpose(1, 2).contiguous().view(B, T, C)

# output projection
y = self.proj(y)
return y



Check out “The Annotated Transformer”

QK™

Attention(Q, K, V) = softmax( A
k

1%

def attention(query, key, value, mask=None, dropout=None):
"Compute 'Scaled Dot Product Attention'"
d_k = query.size(-1)
scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(d_k)
if mask is not None:
scores = scores.masked_fill(mask == 0, -1e9)
p_attn = scores.softmax(dim=-1)
if dropout is not None:
p_attn = dropout(p_attn)
return torch.matmul(p_attn, value), p_attn



Research on LLMs



Model Understanding: Induction Heads

Attention Pattern Attention Heads (hover to focus, click to lock)

| [
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P b https://transformer-circuits.pub/202
| '!"'. 2/in-context-learning-and-induction-
] heads/index.html

1 % 1

Tokens (hover to focus, click to lock) O Selected is source

<EOT>EN: This is the Iaggg_ I've ever seen.
FR: C'est le plus arand| templel que i'ai iamais vu.

DE: Das ist der groBte Tempel, den ich je gesehen habe.


https://transformer-circuits.pub/2022/in-context-learning-and-induction-heads/index.html
https://transformer-circuits.pub/2022/in-context-learning-and-induction-heads/index.html
https://transformer-circuits.pub/2022/in-context-learning-and-induction-heads/index.html

Permuting the Layer Structure of RoBERTa (RTE Accuracy)
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Left: Directed graph of the transitions for models with accuracy = 70%

Right: Transitions Heatmap
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Geometric Deep Learning

e E.g,extends CNNsto curved
manifolds

e Theory to unify different neural
networks architecture families
based on message passing
(generalization of convolution
kernels)

Deep learning today: a zoo of architectures, few unifying principles. Animal images: ShutterStock.

Grids Groups Graphs Geodesics & Gauges


https://arxiv.org/pdf/2104.13478.pdf

Mamba: Linear-Time Sequence Modeling with Selective State Spaces
(Gu & Dao 2023)

Selective State Space Model
with Hardware-aware State Expansion
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https://arxiv.org/pdf/2312.00752.pdf

What is Responsible Al?

e A Human Rights-Based Approach to

Responsible Al (Prabhakaran et al 2022)

e Universal Declaration of Human Rights



https://arxiv.org/abs/2210.02667
https://arxiv.org/abs/2210.02667
https://www.un.org/sites/un2.un.org/files/2021/03/udhr.pdf

Train Your Own Transformer!



Thanks!



