Transformers: More Than
Meets Al

Brian Cruz
UC Berkeley, Advocate

About Me

e Favoriteundergraduate math class:
o Set theory

e Studied DNA topology using stochastic
methods and GPUs

e Worked inindustry as a data engineer,
Al/ML engineer, and Al evangelist.

e Currently Head of Al Engineering for
Advocate

e Came back to school because | missed
Evans Hall

“We are all going to be in jeopardy of being replaced by machines” — Fran Drescher, president of SAG-AFTRA

Transformers: More than Meets Al

1. ABrief History of Sequence Modeling
2. Attention Is All You Need

3. Researchon LLMs

4. Build Your Own GPT!

A Brief History of Sequence
Modeling

Examples of Sequence
Modeling

Time series prediction

Classify the sentiment of a sentence
Translate a passage

Write a five-paragraph essay

RNNSs

-

- | —-——

Unfold

=

import torch.nn as nn

F— class RNN(nn.Module):
def __init__(self, input_size, hidden_size, output_size):

RNN COde super(RNN, self).__init__()

self.hidden_size = hidden_size

self.i2h = nn.Linear(input_size + hidden_size, hidden_size)
self.h20 = nn.Linear(hidden_size, output_size)
self.softmax = nn.LogSoftmax(dim=1)

def forward(self, input, hidden):
combined = torch.cat((input, hidden), 1)

hidden = self.i2h(combined)
output = self.h2o(hidden)
output = self.softmax(output)

return output, hidden

def initHidden(self):
return torch.zeros(l, self.hidden_size)

n_hidden = 128
rnn = RNN(n_letters, n_hidden, n_categories)

Sequences in, Sequences out

one to one one to many

many to one

many to many

many to many

-~

\.

t

~

=

bt 1
M
T
i

~\

(" B

T
ey

/

t o4
ill

r

~

t 1

M

t ot
UL

r

/

\

1
gy
t 1t
A1

~

J

Problems with RNNs

e Vanishing and exploding gradients™

e Handling long-term dependencies®

e Sequential computation during
training*

*from the Transformers marketing team

Attention Is All You Need

Attention is All You Need

Attention is All Your Need (Vaswani et al.
2017)

The image on theright is an “encoder-decoder
architecture”

BERT is just the encoder

ChatGPT is just the decoder

Output
Probabilities

Add & Norm

Feed
Forward

| Add & Norm |<_:

g EEE e Mutti-Head
Feed Attention
Forward) Nx
Nx Add & Norm
f->| Add & Norm | e
Multi-Head Multi-Head
Attention Attention
L L
_ J \. —')
Positional D @ Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs QOutputs

(shifted right)

Attention is a weighted average

keyS pattn values
the — a1 . the
query o 9 cow result
: : . : weighted
jumped jumped — a3 jumped average
over — a . over

Auto-regressive pre-training objective predicts next word

keyS pattn values
the — a1 . the
query o 2 con result
: : . : weighted
jumped jumped — a3 jumped average
over —— a . over Is this

4 “over'"?

Masked attention hides the next word when we try to predict it

keys Pattn values
the — a1 . the
query o % cow result
‘ i I . - weighted
jumped jumped a, jumped average
over — 3 . over Does this
4 predict

“over"?

General attention

query

jumped

keys

the
cow
jumped

over

values
the
cow result
umped weighted
JHL average

over

Linear projections W, W, and W,, first applied

keys pattn values
W, (the) — a1 W,(the)
query Wfcow) — —— a, - W, (cow) result
| . . , weighted
WQ(Jumped) W, (jumped) — a3 W, (jumped) average
W, (over) — a W,(over)

Linear projections W, W, and W,, first applied

keyS pattn values
KWy | a1 : v, Wy,
query e 9 v result
. weighted
qWq S d3 vsWy average
KW, — a v,W

Scaled Dot-Product Attention

“In practice, we compute the attention function on a set of queries simultaneously,
packed together into a matrix Q. The keys and values are also packed together into
matrices K and V. We compute the matrix of outputs as:”

Attention(Q, K, V') = softma (QKT)V
ntion(Q, K, V) = softmax(———
Vdj,

Scaled Dot-Product Attention

-) () p
Scale and
Softmax - Opt. —
Mask
— K — KW, — Matrix Mul.

K - -

— VvV — VW " J

For Self-Attention Q=K=V

Input

Q — Qw,—

O)

Scale and

Softmax

K —— KW, —

Opt.
Mask

-

-

V. — VW

AN

Matrix Mul.

~

)

Self-Attention

|

Output

A

Attention

Fully
connected
Layer
(learned
matrix mul)

keys p_attn values

the — 3.1 . v_1

z
query ow —— a2z w2 result
jumped &—— jumped a3 . v 3 wesiﬁhted
\ over — a4 " v_4 To predict

nnnnnnnn

e |nput and Output can be

thought of as sequences of
embeddings (matrices), like Q,
K, and V themselves

e Self-attention uses the same

input for Q, K, and V

e NOTE: Q, K, andV sometimes

refers to the inputs to the
attention function the “Input”

|

Linear

Multi-Head Attention i

Concat
AA

Scaled Dot-Product h
MultiHead(Q, K, V) = Concat(heady, ..., heady,) W © Attention -]J

A A
where head; = Attention(QWf’?7 K WZ.K , VWZ.V) r‘-bl - 1l il

Linear Linear Linear

Vv K Q

def forward(self, x):
batch size, sequence length (in tokens), embedding dimensionality
B, T, C = x.size()
hs = C // self.n_head # head size

k = self.key(x).view(B, T, self.n_head, hs).transpose(1l, 2)

q = self.query(x).view(B, T, self.n_head, hs).transpose(1l, 2)
v = self.value(x).view(B, T, self.n_head, hs).transpose(1, 2)
k_t = k.transpose(-2, -1)

d_k = k.size(-1)

att = F.softmax(q @ k_t / math.sqrt(d_k), dim=-1)

y =att@v

re—assemble all head outputs side by side
y = y.transpose(1, 2).contiguous().view(B, T, C)

output projection
y = self.proj(y)
return y

Check out “The Annotated Transformer”

QK™

Attention(Q, K, V) = softmax(A
k

1%

def attention(query, key, value, mask=None, dropout=None):
"Compute 'Scaled Dot Product Attention'"
d_k = query.size(-1)
scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(d_k)
if mask is not None:
scores = scores.masked_fill(mask == 0, -1e9)
p_attn = scores.softmax(dim=-1)
if dropout is not None:
p_attn = dropout(p_attn)
return torch.matmul(p_attn, value), p_attn

Research on LLMs

Model Understanding: Induction Heads

Attention Pattern Attention Heads (hover to focus, click to lock)

| [
! A Logit attr

P b https://transformer-circuits.pub/202
| '!"'. 2/in-context-learning-and-induction-
] heads/index.html

1 % 1

Tokens (hover to focus, click to lock) O Selected is source

<EOT>EN: This is the Iaggg_ I've ever seen.
FR: C'est le plus arand| templel que i'ai iamais vu.

DE: Das ist der groBte Tempel, den ich je gesehen habe.

https://transformer-circuits.pub/2022/in-context-learning-and-induction-heads/index.html
https://transformer-circuits.pub/2022/in-context-learning-and-induction-heads/index.html
https://transformer-circuits.pub/2022/in-context-learning-and-induction-heads/index.html

Permuting the Layer Structure of RoBERTa (RTE Accuracy)

/
1 "

| S

~ -54% 0 TIREWERAS 7% 52% 48% 52% 53% 53% 48% 48%
m -55% . WIEOWEE
< -52% 59% 55% LR NER

LEEH 49% 48% 48% 48% 48% 48%
852% 48% 48% 48% 48% 48%
i -48% 49% 54% 48% CRECNIEEWERAS6% 48% 48% 48% 48%
© -48% 50% 54% 48% 55% 55% EEECWERE 49% 48% 48% 48%
~ -48% 48% 49% 50% 48% 51% [pEENERNERE

© -49% 48% 48% 49% 48% 48% 52% LB}
o -46% 48% 48% 49% 48% 49% 55% I

S -52% 48% 49% 50% 49% 55% 57% CERplE
-

-50% 52% 52% 55% 55% |- GERATR U EENPATWPALY

0 1 2 3 4 5 6 7 8 9 10 1

Left: Directed graph of the transitions for models with accuracy = 70%

Right: Transitions Heatmap

0.70

- 0.50

Geometric Deep Learning

e E.g,extends CNNsto curved
manifolds

e Theory to unify different neural
networks architecture families
based on message passing
(generalization of convolution
kernels)

Deep learning today: a zoo of architectures, few unifying principles. Animal images: ShutterStock.

Grids Groups Graphs Geodesics & Gauges

https://arxiv.org/pdf/2104.13478.pdf

Mamba: Linear-Time Sequence Modeling with Selective State Spaces
(Gu & Dao 2023)

Selective State Space Model
with Hardware-aware State Expansion

A
—— — S —>
p— r) -

KN
|
I
i
\ !
i c——————___L 1A, GPU
} Discretize T SRAM

Project
GPU HBM

s Selection Mechanism

https://arxiv.org/pdf/2312.00752.pdf

What is Responsible Al?

e A Human Rights-Based Approach to

Responsible Al (Prabhakaran et al 2022)

e Universal Declaration of Human Rights

https://arxiv.org/abs/2210.02667
https://arxiv.org/abs/2210.02667
https://www.un.org/sites/un2.un.org/files/2021/03/udhr.pdf

Train Your Own Transformer!

Thanks!

